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Dynamics of fractal sol-gel polymeric clusters
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The dynamics of flexible polymeric fractals in solutions is discussed using a linearization self-consistent
approximation. When hydrodynamic interaction is not scred@@mm mode) we find that the mean square
displacement A(t)?) of a monomer is anomalously increasing with tin&(t)2D~t* with a universal
exponente=2/d in d dimensions, independent of the fractdk) and spectral dimensions. The viscoelastic
modulus behaves & (w)~(iw)", with u=d;/d. When hydrodynamics is screené@ouse modelwe find
a=2/(2+d;) andu=d;/(2+d;). We conclude that measurementsiaf 2/d indicate unambiguously that the
Zimm model is applicable and thus should be correlated wittd; /d in rheology measurements.
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Polymers in solution form a variety of self-similar struc- <d. Below we shall frequently use the gyration exponent
tures. For example, a linear polymer molecule forms a coilor the chemical length exponef,,=1/v used in Ref.
with a radius of gyratiorR,~N"” whereN is the number of [6]), which describes,via the scalingr~I1”, how the
monomers and the exponentlepends on the solvent quality D-dimensional manifold is crumpled in thé-dimensional
[1,2]. Sol-gel systems present another example of selfspace. Using the relation between and |, we haver
similarity [1,3-5. They consist of polymers or aggregates ~n*'®, which impliesD = vd; [10].
randomly cross-linked to form network clusters embedded in Because our fractals are flexible, theimfigurationin the
the solvent. Gelation occurs when an infinite cluster percosolvent is fluctuating in time, even though their topology is
lates through the whole systdh,6]. The dynamic properties fixed. Thus, the monomers can move in the embedding sol-
of these systems are of great theoretical and practical inteirent by these configuration fluctuations. One of our objec-
est. Commonly measured quantities are the dynamic strugives is to calculate the resulting mean square displacement
ture factorS(q,t) (measured by light scatteringwhich is  (MSD) of a monomei(of the fracta) in the Euclidean space.
sensitive to the local monomer diffusion, and the macro-This should bedistinguishedrom the diffusion of a particle
scopic viscoelastic modulUs(w) that is measured in rheol- on a “frozen” fractal. The latter also leads to anomalous
ogy experiments. diffusion in the embedding space due to the self-similarity

The dynamics of linear polymers in dilute solution has[11,12, but this will only serve us for defining various dy-
been studied in several classical wofks2]. The dynamics namic exponents.
of sol-gel systems has also attracted a lot of experimental and The diffusionon a fractal can be described in the mani-
theoretical attentiof4,5,7,9 and relatively good understand- fold space byl?(t)~t?%wo with d,,=2. In real space this
ing has been achieved. Some measuremen&at) [7,8],  translates ta?(t)~t%%w, with d,,=d,./v. The probability
which could be associated with the dynamics of internalof the random walker returning to the origin at timés then
modes, have remained unsatisfactorily explained, howevep (t)~r(t) % ~I(t)"°, which scales asP,(t)~t %7
A similar situation exists for measurements@fw) [7]. In whered,=2d;/d,,=2D/d,,, is thespectral dimensiofl1].
this Rapid Communication we present a theoretical frameSince v<1 andd,,,=2 we haved,<D<=d;<d. We note
work for self-similar, flexible polymers, encompassing boththat for Euclidean manifold§9] d,=D (d,,=2), but our
linear and branched polymers, that may help to clarify thes@pproach willnot be limited for this special case.
measurements. Some of our results have been previously de- We start by generalizing the Zimm model for linear self-
rived, but the approach we use is simpler than those availablgvoiding polymer$2] to arbitraryflexiblefractals. The inter-
and allows straightforward calculations of other observablesal coordinate of a monomer will be described, even if just

within the same framework. _ , . symbolically, by the “vector” . The vectorR(I) will de-
We consider a fractal manifold of a noninteger d|menS|onnote the position of this monomer in thiedimensional em-
D [9,10. Special integer values describe linear polymers,eqding space. The free energy of the manifold is described

with D=1 and membranes witb =2. Branched polymers , 5 generalized Edwards “spring and bead” Hamiltonian
forming a gel are described by in the range KD<2 (ks=1 in our unit3 [9]

because of the internal cross-linkipg]. Thus, the number of

monomers within a manifold “radius’l (i.e., the chemical .. T ..

or minimal length defined in Ref6]) is n~IP. When the HI{R(DH= 4o f d®I(VpR(1))?

manifold is embedded in @dimensional Euclidean space, it

may crumple so that the mass(i.e., the number of points, b Dir ety 20

or “monomers,” that belong to the fractalvithin a radiusr +Uf d 'f d®lRIH—-R(M), (D)
scales am~r%, whered; is the fractal dimension(also

known as the Hausdorff or self-similarity dimensjod;  whereb is the bead linear size andis the excluded volume
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parameter. The self-avoidance, described by the second term,
makes an exact treatment of the dynamics impossible, but it
becomes tractable in the so-called linearization approxima-

tion that we now describe.
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dR(I - oH 2o
_():_f d°lL(Ry ) —— +f(t,1), (9
dt SR(1")

We shall make use of the orthogonal set of eigenstateghereRr,,, =R(I)—R(I’) andf(t,) is thermal white noise.

‘le(r) of the Laplacian in the manifold space
[11,4,6, which is defined as the continuum limit of a
finite nearest-neighbor difference operatorV2D¢>(r)
=b~20/ds3;, (") —#()]. (These eigenstates have
been studied extensively in the context of vibratigb$)
Thus,

VEWe(h=—EWg(), 2)
where [dPIW* (N We (1)=LP6g ¢/, with L as the fractal
chemical size, andV* (" =W¥g(—1). This allows us to
construct areffective Hamiltonian B that is Gaussian and
diagonal in the manifold eigenstate space

R(E)?

— 3)
E (IR(E)[®)

eff

1
-
2

whereR(I)=3cReWe(). The mean valué|R(E)|?) will

be determined self-consistently from knowing the real space

correlation function
<(F§<F>—F3<F'>)2>=2f dE N(E)(|R(E)[?)

X (1—ge([T-T"])), 4)

whereN(E)~EY%?~1 js the density of eigenstateig [11]
andge(|T—1"])=(¥ (1) We* (I"))qgs is a disorder ensemble
average eigenstate correlator. Requiring that¥hes also
be eigenstates of the translation operator on the fractal i
plies thatW (N We(—1")=¥(0)¥(I—I"), which leads
to ¥¢(0)=1 and

ge()=(Ve(N)g=Ye(), (5)

HereL(F) is the Oseen tensor describing the hydrodynamic
interaction between different beaflk3], which ind dimen-
sions is given byL (r)o(rr+ 1)/ yr9=2, where is the sol-
vent viscosity.(Note that the viscosity dimensions dre]
=[11>"9M]/[t].) We now perform the preaveraging ap-
proximation[2], whereL is replaced by its equilibrium av-
erage. Assuming that the probability distributionﬁqf, de-

pends only onRy//(|R,|) [consistent with the effective
Hamiltonian in Eq.(3), which takes this distribution to be
Gaussiah we have (L(Ry))eq=A((Ry/))1, where A(r)
~1/7r972. Therefore, Eq.9) becomes linear and in the
manifold eigenstate space it is

dR(E) x .
—qr =~ @(BRE)+F(ED), (10)
where
TA(E)
0(E)=— . 1
(IR(E)[?)

Here A(E) is the manifold eigenstate transform of the hy-
drodynamic interaction kernél (R;;;) (averaged over fractal

disordey
f dPlW (1)

(IR(1—R(0)|972) ~ bld-2-0)
(12

1
AE)==
Y

E(d-2)/d,,~dg2

IATWhere we made use @/(»d,,) =d¢/2]. Consequently, the

mode relaxation rate becomes

(13

where Wg(l) is the disorder ensemble averaged eigenstatezquations(8) and (13) are equivalent to the Zimm model

Following the general considerations described in Riefk.

and[11], the latter should have the following scaling form:
V()= f(EW?D). (6)

(Note that the dimensions d& are [E]=[1]"2P/%.) This

also agreesgusingr ~1") with the suggestetkeal space‘su-
perlocalization” form[6]

W(r)~exqd —constrEYdw) 1], 7

Equation(4) must be equal to-b?~2*|[ —1"|2*, which im-
plies that

<|Ii(E)|2)zbZ_ZVE_Z/dW_dS/Z. (8)

results for linear polymerg2].
We are now able to calculate the time-dependent MSD of
a single monometbead in the form

(A(1)2=((R(T,t)—R(T,0))?)
=2f dEN(E)(|R(E)|2)(1—e @B, (14

Using Eqs.(8) and(13) for |R(E)|? andw(E) we obtain(for
times b/ T<t< 7RY/T, whereRy is the radius of gyration

2/d
(15

T
(A(t)2>2(;t

(which has been previously obtained for linear polymers in

The Langevin equations of motion in the creeping flowd=3 © solvent[14]). It is seen that a monomer performs

approximation arg2]

anomalous subdiffusiofd (t)2)~t* (with a<1) in the em-



RAPID COMMUNICATIONS

PRE 58 DYNAMICS OF FRACTAL SOL-GEL POLYMERIC CLUSTERS R2727

bedding space. This anomalous diffusion is essentidéyn- and S(q,t). Note that Gg(t) saturates to unity fort
tical to that of linear polymers, and the anomalous exponent= nRg/T, which implies that for the long tail size distribu-
a=2/d is independenbf all fractal characteristic§i.e., in-  tion at the gel point the time dependence of the macroscopic
dependent of the exponerdsandd;). This can be attributed modulus will be modified5].
to the long range hydrodynamic interaction that strongly Equation(20) agrees with previous results of Catef
couples the motion of monomers through the Euclidearand of Martinet al. [5] (for the single cluster contribution
space, even when they are distant in the fractal manifoldvho used different methods. Our approach has an important
space. As a consequence, the fractal characteristics may bedvantage over these studies. Unlike in the work of Martin
come irrelevant. This becomes more evident when we coret al, it does not involve aad hochypothesis for the scaling
sider below the Rouse model. We note that 2/d has also  of the mode relaxation rates with the Euclidean space wave
been recently derived for polymerized membranes by renorvector. Our derivation also appears much simpler than the
malization groud15]. It also agrees with the scaling hypoth- comprehensive study of Cates—even if closely related to
esis(A(t)2>=R§f(t/7—), with 7= nR‘g’/T [f(x) is a scaling it—which involves effective medium theory as a means of
function], if we assume that fot<r the result should not obtaining the relaxation rate spectrdiag. (13)]. More im-
depend orR,, which implies thatf (x) ~x%? for x<1. portantly, the MSD[or S(q,t)] and G(w) were obtained
We now turn to a discussion of two other familiar observ-using the same manifold mode analysis. We shall elaborate
ables. First, consider the dynamic structure fac$pg,t).  on this point at the end.
Generalizing the Doi-Edwards calculation for linear poly- So far we have considered self-similar structures with the
mers[14], this is first expressed dssing a 1IN normaliza-  hydrodynamic interaction influencing the dynamics. In dense
tion, whereN is the number of monomers systems hydrodynamic backflow effects may become
L L screened above a certain length~ £ (£ is the mesh size
5 - > and we recover the free draining limit described by the
S(a.t)= bP f d°! exr{ B €q2<(R(I D =R(0,0)%)|. Rouse modef2,4]. This implies that the observed dynamics
(16)  should cross over from Zimm-like at short times to Rouse-
] o ) like at longer times. The effect of the intercluster excluded
The correlation function in the exponent can be written as golume interaction on the cluster distribution on space, i.e.,
sum of a static part and dynamic parts, in the exponent (or dy), is less evident. However, even if
. - P r . the actual value o in the regimeé<r <Ry is not known,
((R(1,1) =R(0,0)%) = ((R(1) = R(0))5) +(A(I,1)%), we can still use it as a model parameter in our dynamic
17 self-consistent theory and examine the consequences. This is
expected to be a good approximation, as long as entangle-

where
ments do not play a role. The effective bead dizehould
S, S e~ then be set t&y but we shall continue to use the parameter
(ALY >:2J dE N(E)ge(D(IR(E)[)(1—e~“®"), b for clarity.

(18 For the Rouse model we can still apply the formalism

used above, except that now the friction is local, and is sim-
which reduces to the MSD of EL4) for [ =0. We can then Ply the Stokes drag on a single be#]. We thus usein-
show that for n/qT<t<yRYT the decayof S(q,t) is stead of the Oseen tenyolL=A1 with A=bPs°(T

dominated by(A(0t)?), the MSD of a single monomer. —{")/»b%"2 Accordingly, A(E) is independent oE, and
Thus, this decay becomes nearlgtaetched exponential the relaxation rate becomes
S(q’t)zs(q)e—cons[(qu/n)t]Z/d' (19) T E20du+dg2
w(E): nbafozv . (21)

whereS(q)~q~ % is the static structure factor. The stretch-
ing exponent 21 is thereforeindependenbf all fractal char-  ysing Eqs.(8) and(21) in Eq. (14), we now obtain
acteristics. Importantly, it has been shown that such an inter-
nal mode induced decay is not modified by gel point ) 5
polydispersity[8]. (A(H)%)=b ol
Second, we consider the contribution of clusters to the
shear viscoelastic modulus(w) of the solution, assuming Thus, for the Rouse model the anomalous diffusion exponent
monodispersity of cluster sizes. In the time domain it isis dependent od; . For the intrinsic viscoelastic modulus we
given byG(t)=(T/v)Gg(t), wherev, is the volume avail- obtain
able per cluster and the intrinsic modul{ig] is (for t
<7RY/T)

2/(2+dy)
) (22)

bd) di /2y
GR(I)ZN(F)

: (23
nRS d¢ /d
GR(t):f dE N(E)e w(E)t:<?) : (20 whereN=(L/b)®=(R,/b)% is the fractal “mass.” Hence,
Gr(w)~ (i w)%/(2*9) "This agrees with the studies of Cates
In the frequency domaiGr(w)~ (iw)%’d. Thus, the vis- [4] and Martinet al. [5], while Eq. (22) agrees with other
coelastic spectruris sensitive tod;, even if not tods. This  studies in the context of linear polymlel6] and polymerized

should be contrasted with the dynamics shown by the MSDnembrane dynamidsl5].
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Our main results can be summarized in terms of the two Recent measurements @(w) on chemically cross-
exponents: one describes the MSD of a monomer and thénked pre-gel clusters yieldi=0.69+0.005[7]. From the
dynamic structure factor, (A(t)2)~t® and S(qg,t) light scattering studies odiluted samples one can infer a
~e Kt and the other describes the complex modulusfractal dimension in the range 2.821;<2.11. The Zimm

Glw)~ o' F : th di . h f dmodel, wherau=d;/3, then predicts 0.6Zu<0.70, in good
(w)~w". Focusing on three dimensions, we have foun agreement with the experimental value. We note, however,
that «=2/3 for all fractals that are subject to hydrodynamic ih5t measurements & (o) on diluted samples are required

interaction(Zimm mode), independent ofl; andds, yetu  for a more reliable comparison. In addition, for the same
=d¢/3. This contrasts with the case of screened hydrodysystem it was found from dynamic light scattering that
namics(Rouse modglwhere both power laws depend dp, =0.77=0.02, which is left unexplained. One of the reasons
a=2/(2+d;) (i.e.,«<2/3) andu=d;/(2+d). Thus, mea- for such a discrepancy, however, could be that the long time
suring an exponent=2/3 can imply nothing about the frac- relaxation regime»n/q“T<t has not been reachdd8]. In

tal; however, it can quite unambiguously suggest that théuch cases a numerical fit to the full decay profigs.
Zimm model is applicable, which means thatw) should  (16)—(18)] could be useful.

: _ We conclude that combined measurement$(af,t) (or
= ) > -
:ﬁj ddeedsl():;/ll?)eoctihbrﬁo diflls3 Measurements of>2/3 areex real space measurements of the M3id of G(w) can be a

. powerful tool for understanding the dynamics of fractals in
It should be noted that attempting to dedugw) from . solutions. Since we have obtained the normal mode relax-

the MSD alone on the basis of the gengralizedz Langevinyion times and amplitudes, we are able to calculate other
equation[17], which impliesi oG(w)~1KA%), [(A%), is dynamic observables of interest.
the Fourier-Laplace transform ¢f\?(t))] fails completely.

For example, frome=2/3 one would predicu=2/3, which We are very grateful to Professor Michael Cates for a
is only true ifd;=2 (e.g., linear Gaussian chajn§his sim-  critical reading of the manuscript prior to its publication,
ply suggests that themacroscopicand themicroscopicvis-  which greatly helped to improve it, and to the late Professor
cosities are different, and has important consequences on ti8hlomo Alexander for useful discussions. Support from The
interpretation of “microrheology” experiments in which GMJ Schmidt Minerva Center for Supramolecular Architec-
G(w) is obtained in this way from MSD measurements.  tures is gratefully acknowledged.
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